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Abstract

We introduce the concept of a consistency space. The idea of the
consistency space is motivated by the question, Given only the collec-
tion of sets of sentences which are logically consistent, is it possible to
reconstruct their lattice structure?
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1 Introduction

Definition A consistency space (€2, ) is comprised of a nonempty set €2 and

a nonempty collection g of subsets of €2 which satisfy the following conditions:

O¢p (1.1)

If Ac pand BC A, then B € p (1.2)

Since g is nonempty, condition 2 implies ) € p. The members of p

are called the consistent sets, the remaining subsets of ) are called the



inconsistent sets. Notice that any superset of an inconsistent set must be

inconsistent.

The formulasﬂ of a logic form a consistency space in a natural way. Indeed,
define €) to be the collection of formulas, and define the members of g to be
) together with the subsets S C € of formulas whose logical conjunction
/\ 7 is not equivalent to false. It is easy to see that (2, p) as defined is a
zzisistency space.

For example, consider the collection of formulas over a single Boolean

variable z:

Q={z, -z}

The subsets of this collection are

{®7 {$}, {_'I}a {SC, _'x}}

One possible choice for p is {(), {z}, {—x}}; as defined (£, p) is a consistency
space.

Next we define an equivalence relation on subsets of €2:

Definition We say that A ~ B if for every C' C 2, AUC € p if and only if

BUC € p. In particular, if A ~ B, then A € g if and only if B € p.

Definition We say that a consistency space (€, p) is complete if for any

subset A C €, there exists an element x4 € € such that A ~ {z4}.

n the following, for technical reasons we omit true and false as formulas.



Proposition 1.1 For any C C Q, if A~ B then (AUC) ~ (BUC).

Proof: Suppose A ~ B and fix C' C . Suppose (AUC)U D € p. Then
since A ~ B and AU(C'UD) € g, it follows that BU (C' U D) € p. But this
just means (BUC)UD € p,s0 (AUC)U D € p implies (BUC)U D € g.
Similarly (BUC)UD € g implies (AUC)UD € p, hence (AUC) ~ (BUC).

Definition If it exists, the negation of a nonempty subset A € @, denoted

A, is any member of @ satisfying the following:

AUA¢ p (1.3)
For any C € p, if AUC ¢ p then AUC ~ C (1.4)
For any C € g, if AUC ¢ p then AUC ~ C (1.5)

Proposition 1.2 If it exists, the negation of A is unique in the sense that
for any By and By both satisfying the criteria for A, it must be true that
Bl ~ BQ.

Proof: Fix nonempty A € . Suppose B; and By both satisfy the criteria for
A. Then B, € pand By € p. By (1.3), AUB; ¢ p and AUB, ¢ p. By taking
C = By in (1.4) we get that AU By ¢ g implies AU By ~ B;. In particular
this must hold when we replace A with B, whence B, U B, ~ B;.By taking
C = B, in (1.4) we get that AU B, ¢ o implies AU By ~ B,. In particular
this must hold when we replace A with B;, whence B; U By ~ B,. Finally,

by transitivity of ~ we conclude B; ~ Bs.
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In the following we restrict our attention to consistency spaces (€2, o) for

which A exists for every A € p.

Proposition 1.3 For any A € p, ([1) ~ A.

Proof: First, by (1) we have AUA ¢ o hence AUA ¢ o so by (2) we have
@UA ~ A and hence AU@ ~ A. Next, by (1) we have AU@ ¢ p
so by (3) we have AU @ ~ @ and hence @ ~ AU @ Finally, the

A

transitivity of ~ implies (fl) ~ A, as desired.
Proposition 1.4 For any A,B € o, AUBUB ¢ p.

Proof: For a contradiction, suppose AU BU B € . Since BU B C

AUBUB, we must have BUB € gp. But this is absurd, hence AUBUB ¢ .
Proposition 1.5 For any A,B,C € ¢, if BUB ~ C, then AUC ~ A.

Proof: We have immediately that BUB ¢ . By Proposition 1.4 we have
AUBUB ¢ . Since BUB ~ C and BUBU A ¢ g, by Proposition 1.1 we
must have CU A ¢ p, i.e. CUA ¢ p. By definition we have C U A ~ A, as

desired.

Proposition 1.6 For any A,B € p, A ~ B if and only if AUB ¢ o and
BUA¢ p.

Proof: (=) Suppose A ~ B. Then AU B ~ BUB. Since BUB ¢ g, it

follows that AUB ¢ . The claim that BUA ¢ g is similarly demonstrated.



(<) Suppose AUB ¢ p and BUA ¢ o. Then BUA ¢ @, hence BUA ~ A,
ie. AUB ~ A. Also, AUB ¢ ¢, hence AU B ~ B. By transitivity of ~ ,

we have A ~ B, as desired.
Proposition 1.7 For any A,B € p, A ~ B if and only if A ~ B.

Proof: (=) Suppose A ~ B. Then by Proposition 1.6, we have AUB ¢
and BU A ¢ p. By definition, AU B ¢ p implies AU B ~ B. By the same
definition, BU A ¢ g implies BU A ~ A. Since AU B ~ BU A, it follows
by transitivity that A ~ B.

(<) Suppose A ~ B. Then the immediately previous argument implies

@ ~ @ Since (/_1) ~ A and (B) ~ B by Proposition 1.3, transitivity of

~ implies A ~ B.
Definition If B exists, we say that A — B if and only if AU B ¢ .
Proposition 1.8 For any A€ p, A — A.

Proof: Since by definition we have that AUA ¢ @, by definition it follows

that A — A.

Proposition 1.9 For any A,B € p, A ~ B if and only if A — B and
B — A.

Proof: (=) Suppose A ~ B. By the definition of ~ it follows that
AU B ~ BU B. By definition we have BU B ¢ g, thus by the definition of
~ it follows that AU B ¢ @ and thus A — B. Since A ~ B, it follows by the
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definition of ~ that AU A ~ BU A. By definition we have AU A ¢ @, thus
by the definition of ~ it follows that BU A ¢ o and thus B — A.
(<) Suppose A — B and B — A. Then by definition, AU B ¢ ¢ and

BU A ¢ ¢, hence by Proposition 1.6, we have A ~ B.

Proposition 1.10 For any A,B,C € p, if A - B and B — C, then
A—=C.

Proof: Suppose A — B and B — C. Since A — B, we have by definition
that AUB ¢ p,i.e. BUA ¢ g, which by definition implies BU A ~ A. The
definition of ~ implies BUAUC ~ AUC. But B — C, hence BUC' ¢ p by
definition, and then immediately BU AU C ¢ g since BUC C BUAUC.

Since BUAUC ~ AUC, this implies AU C ¢ p. But this means A — C.

Proposition 1.11 Forany A, B,C,Q € ¢, ifQ - A, Q — B, and AUB ~
C, then Q — C.

Proof: Suppose @ — A and Q — B, and AUB ~ C. Then QUA ¢
and QU B ¢ g by definition. By definition, Q U A ¢ o implies QU A ~ Q,
and QU B ¢ p implies QUB ~ Q,s0 AUBUQ ~ AUQ ~ @, and thus by
transitivity we have AUBUQ ~ (. By definition of equivalence, this means
QUC ~ AUBUQUC. Since AUB ~ C, we have AUBUQUC ~ CUQUC D
CUC ¢ p, hence AUBUQUC ¢ p, thus since QUC ~ AUBUQUC, we
have, again by definition of equivalence, that Q U C' ¢ ¢ and thus Q — C,

as desired.



Proposition 1.12 Forany A,B,C,Q € p, if A - Q , B — Q, and AUB ~
C then C — Q.

Proof: Suppose A — Q and B — @, and AU B ~ C. Then by definition
we have AUQ ¢ p and BUQ ¢ p. By definition, AU Q ¢ ¢ implies
AUQ ~ @, and BUQ ¢ p implies BUQ ~ Q. Since AUQ ~ Q, by
definition of equivalence we have AUBUQ ~ Q U B. Since QU B ~ Q,
this implies AU BUQ ~ Q. By definition of equivalence, this gives C'UQ ~
CUAUBUQ. Since AU B ~ C, again by definition of equivalence we get
CUAUBUQ ~ CUCUQ. Combining these results yields CUQ ~ CUCUQ.
Since CUCUQ D CUC ¢ g, it follows that CUC UQ ¢ p. Since
CUQ ~CUCUQ, we get that CUQ ¢ p and thus C — Q. Thus in a

sense (' is a least upper bound of A and B.

Definition If there exists some C such that AU B ~ C, we define the join

AV B=C.

Definition If there exists some C such that AU B ~ C', we define the meet

ANB=C.
Proposition 1.13 For any A, B € p, A — B if and only if B — A.

Proof: (=) Suppose A — B. Then by definition, AU B ¢ @, hence

BUA ¢ g, and BU (A) ¢ o by Proposition 1.7 and the definition of

equivalence. But this means B — A.



(<) Suppose B — A. Then by definition, BU(A) ¢ p, hence (A)UB ¢ o
and AU B ¢ p by Proposition 1.7 and the definition of equivalence. But this

means A — B.

Proposition 1.14 For any A, B,C.,D,Q € o, if A > B, QUA ~ C and
QUB ~ D, then C — D.

Proof: Since A — B, by definition we have AUB ¢ ¢, and thus BUA ~ A
by definition. The definition of equivalence implies QU BUA ~ QU A. Since
BUA ~ A, equivalence implies QUAUD ~ QU BU AU D. Since
QU B ~ D and thus equivalence implies Q U BU D ~ D U D; by definition,
DUD ¢ psoweget QUBUD ¢ p. Since QUBUAUD D QUBUD,
we get QUBUAUD ¢ p. Since QUAUD ~ QU BU AU D, this implies
QUAUD ¢ p. Since QUA ~ C, and thus by equivalence QUAUD ~ CUD,
hence QU AU D ¢ p implies C U D ¢ . But this just means that C — D,

as desired.

2 Illustrative Counterexamples

Counterexample: Not every member of p gas a negation. Indeed, take 2 =

{a,b} and p
Counterexample: If Vi € I, A; ~ B;, |J A; € p and |J B; € p, then it
i€l i€l
does not necessarily follow that |J A; ~ |J B;. Indeed, take € to be the
i€l i€l

integers and take



o={0}uU {N CQ;N #0, > 2" converges at at least one point in C}.

neN

Define I = {1,2,3,---}, A, ={1,2,3,--- ,i} and
B; = {-1,-2,-3,---,—i}. Next, Vi € [,A; ~ B;. |JA; € p because

i€l

o0 o
> 2" converges at z = 0. |J B; € p because Y z7" converges at z = 2.
n=1 el n=1

However, if we take C' = {1,2,3,---}, then (JA, UC = |J A; € g, yet

icl i€l
UBUC={-,-3,-2-1,1,2,3,---} ¢ psince -+ 23+ 22+ 271 +
i€l

2+ 22+ 23+ -+ does not converge for any z € C.

Thus it is not true that |J A; ~ |J B;.
iel iel
Counterexample: One might ask, is the union of a nested collection of

consistent sets always consistent? The answer is no. Consider the sets of

statements A, = {“Ais an integer > i";1 < i < n} forn = 1,2,3,---
oo

Clearly each A, € p and A, C A,.;. However, it is clear that |J A,

n=1
is always inconsistent, since no integer is greater than every other. Hence

!1 A, ¢ p.
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