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Abstract

We introduce the concept of a consistency space. The idea of the
consistency space is motivated by the question, Given only the collec-
tion of sets of sentences which are logically consistent, is it possible to
reconstruct their lattice structure?
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1 Introduction

Definition A consistency space (Ω, ℘) is comprised of a nonempty set Ω and

a nonempty collection ℘ of subsets of Ω which satisfy the following conditions:

Ω /∈ ℘ (1.1)

If A ∈ ℘ and B ⊆ A, then B ∈ ℘ (1.2)

Since ℘ is nonempty, condition 2 implies ∅ ∈ ℘. The members of ℘

are called the consistent sets, the remaining subsets of Ω are called the
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inconsistent sets. Notice that any superset of an inconsistent set must be

inconsistent.

The formulas1 of a logic form a consistency space in a natural way. Indeed,

define Ω to be the collection of formulas, and define the members of ℘ to be

∅ together with the subsets S ⊂ Ω of formulas whose logical conjunction∧
x∈S

x is not equivalent to false. It is easy to see that (Ω, ℘) as defined is a

consistency space.

For example, consider the collection of formulas over a single Boolean

variable x:

Ω = {x,¬x}

The subsets of this collection are

{∅, {x}, {¬x}, {x,¬x}}

One possible choice for ℘ is {∅, {x}, {¬x}}; as defined (Ω, ℘) is a consistency

space.

Next we define an equivalence relation on subsets of Ω:

Definition We say that A ∼ B if for every C ⊆ Ω, A∪C ∈ ℘ if and only if

B ∪ C ∈ ℘. In particular, if A ∼ B, then A ∈ ℘ if and only if B ∈ ℘.

Definition We say that a consistency space (Ω, ℘) is complete if for any

subset A ⊆ Ω, there exists an element xA ∈ Ω such that A ∼ {xA}.
1In the following, for technical reasons we omit true and false as formulas.
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Proposition 1.1 For any C ⊆ Ω, if A ∼ B then (A ∪ C) ∼ (B ∪ C).

Proof: Suppose A ∼ B and fix C ⊆ Ω. Suppose (A ∪ C) ∪ D ∈ ℘. Then

since A ∼ B and A∪ (C ∪D) ∈ ℘, it follows that B ∪ (C ∪D) ∈ ℘. But this

just means (B ∪ C) ∪D ∈ ℘, so (A ∪ C) ∪D ∈ ℘ implies (B ∪ C) ∪D ∈ ℘.

Similarly (B∪C)∪D ∈ ℘ implies (A∪C)∪D ∈ ℘, hence (A∪C) ∼ (B∪C).

Definition If it exists, the negation of a nonempty subset A ∈ ℘, denoted

Ā, is any member of ℘ satisfying the following:

A ∪ Ā /∈ ℘ (1.3)

For any C ∈ ℘, if A ∪ C /∈ ℘ then Ā ∪ C ∼ C (1.4)

For any C ∈ ℘, if Ā ∪ C /∈ ℘ then A ∪ C ∼ C (1.5)

Proposition 1.2 If it exists, the negation of A is unique in the sense that

for any B1 and B2 both satisfying the criteria for Ā, it must be true that

B1 ∼ B2.

Proof: Fix nonempty A ∈ ℘. Suppose B1 and B2 both satisfy the criteria for

Ā. Then B1 ∈ ℘ and B2 ∈ ℘. By (1.3), A∪B1 /∈ ℘ and A∪B2 /∈ ℘. By taking

C = B1 in (1.4) we get that A ∪ B1 /∈ ℘ implies Ā ∪ B1 ∼ B1. In particular

this must hold when we replace Ā with B2, whence B2 ∪B1 ∼ B1.By taking

C = B2 in (1.4) we get that A ∪ B2 /∈ ℘ implies Ā ∪ B2 ∼ B2. In particular

this must hold when we replace Ā with B1, whence B1 ∪ B2 ∼ B2. Finally,

by transitivity of ∼ we conclude B1 ∼ B2.
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In the following we restrict our attention to consistency spaces (Ω, ℘) for

which Ā exists for every A ∈ ℘.

Proposition 1.3 For any A ∈ ℘,
(
Ā
)
∼ A.

Proof: First, by (1) we have A∪ Ā /∈ ℘ hence Ā∪A /∈ ℘ so by (2) we have(
Ā
)
∪ A ∼ A and hence A ∪

(
Ā
)
∼ A. Next, by (1) we have Ā ∪

(
Ā
)
/∈ ℘

so by (3) we have A ∪
(
Ā
)
∼
(
Ā
)

and hence
(
Ā
)
∼ A ∪

(
Ā
)
. Finally, the

transitivity of ∼ implies
(
Ā
)
∼ A, as desired.

Proposition 1.4 For any A,B ∈ ℘, A ∪B ∪ B̄ /∈ ℘.

Proof: For a contradiction, suppose A ∪ B ∪ B̄ ∈ ℘. Since B ∪ B̄ ⊆

A∪B∪B̄, we must have B∪B̄ ∈ ℘. But this is absurd, hence A∪B∪B̄ /∈ ℘.

Proposition 1.5 For any A,B,C ∈ ℘, if B ∪ B̄ ∼ C, then A ∪ C̄ ∼ A.

Proof: We have immediately that B∪ B̄ /∈ ℘. By Proposition 1.4 we have

A∪B ∪ B̄ /∈ ℘. Since B ∪ B̄ ∼ C and B ∪ B̄ ∪A /∈ ℘, by Proposition 1.1 we

must have C ∪ A /∈ ℘, i.e. C ∪ A /∈ ℘. By definition we have C̄ ∪ A ∼ A, as

desired.

Proposition 1.6 For any A,B ∈ ℘, A ∼ B if and only if A ∪ B̄ /∈ ℘ and

B ∪ Ā /∈ ℘.

Proof: (⇒) Suppose A ∼ B. Then A ∪ B̄ ∼ B ∪ B̄. Since B ∪ B /∈ ℘, it

follows that A∪ B̄ /∈ ℘. The claim that B∪ Ā /∈ ℘ is similarly demonstrated.
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(⇐) Suppose A∪B̄ /∈ ℘ and B∪Ā /∈ ℘. Then B̄∪A /∈ ℘, hence B∪A ∼ A,

i.e. A ∪ B ∼ A. Also, Ā ∪ B /∈ ℘, hence A ∪ B ∼ B. By transitivity of ∼ ,

we have A ∼ B, as desired.

Proposition 1.7 For any A,B ∈ ℘, A ∼ B if and only if Ā ∼ B̄.

Proof: (⇒) Suppose A ∼ B. Then by Proposition 1.6, we have A∪B̄ /∈ ℘

and B ∪ Ā /∈ ℘. By definition, A ∪ B̄ /∈ ℘ implies Ā ∪ B̄ ∼ B̄. By the same

definition, B ∪ Ā /∈ ℘ implies B̄ ∪ Ā ∼ Ā. Since Ā ∪ B̄ ∼ B̄ ∪ Ā, it follows

by transitivity that Ā ∼ B̄.

(⇐) Suppose Ā ∼ B̄. Then the immediately previous argument implies(
Ā
)
∼
(
B̄
)
. Since

(
Ā
)
∼ A and

(
B̄
)
∼ B by Proposition 1.3, transitivity of

∼ implies A ∼ B.

Definition If B̄ exists, we say that A→ B if and only if A ∪ B̄ /∈ ℘.

Proposition 1.8 For any A ∈ ℘, A→ A.

Proof: Since by definition we have that A∪ Ā /∈ ℘, by definition it follows

that A→ A.

Proposition 1.9 For any A,B ∈ ℘, A ∼ B if and only if A → B and

B → A.

Proof: (⇒) Suppose A ∼ B. By the definition of ∼ it follows that

A ∪ B̄ ∼ B ∪ B̄. By definition we have B ∪ B̄ /∈ ℘, thus by the definition of

∼ it follows that A∪ B̄ /∈ ℘ and thus A→ B. Since A ∼ B, it follows by the
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definition of ∼ that A ∪ Ā ∼ B ∪ Ā. By definition we have A ∪ Ā /∈ ℘, thus

by the definition of ∼ it follows that B ∪ Ā /∈ ℘ and thus B → A.

(⇐) Suppose A → B and B → A. Then by definition, A ∪ B̄ /∈ ℘ and

B ∪ Ā /∈ ℘, hence by Proposition 1.6, we have A ∼ B.

Proposition 1.10 For any A,B,C ∈ ℘, if A → B and B → C, then

A→ C.

Proof: Suppose A→ B and B → C. Since A→ B, we have by definition

that A∪ B̄ /∈ ℘, i.e. B̄ ∪A /∈ ℘, which by definition implies B ∪A ∼ A. The

definition of ∼ implies B ∪A∪ C̄ ∼ A∪ C̄. But B → C, hence B ∪ C̄ /∈ ℘ by

definition, and then immediately B ∪ A ∪ C̄ /∈ ℘ since B ∪ C̄ ⊆ B ∪ A ∪ C̄.

Since B ∪ A ∪ C̄ ∼ A ∪ C̄, this implies A ∪ C̄ /∈ ℘. But this means A→ C.

Proposition 1.11 For any A,B,C,Q ∈ ℘, if Q→ A , Q→ B, and A∪B ∼

C, then Q→ C.

Proof: Suppose Q → A and Q → B, and A ∪ B ∼ C. Then Q ∪ Ā /∈ ℘

and Q ∪ B̄ /∈ ℘ by definition. By definition, Q ∪ Ā /∈ ℘ implies Q ∪ A ∼ Q,

and Q∪ B̄ /∈ ℘ implies Q∪B ∼ Q, so A∪B ∪Q ∼ A∪Q ∼ Q, and thus by

transitivity we have A∪B∪Q ∼ Q. By definition of equivalence, this means

Q∪C̄ ∼ A∪B∪Q∪C̄. Since A∪B ∼ C, we have A∪B∪Q∪C̄ ∼ C∪Q∪C̄ ⊇

C̄ ∪C /∈ ℘, hence A∪B ∪Q∪ C̄ /∈ ℘, thus since Q∪ C̄ ∼ A∪B ∪Q∪ C̄, we

have, again by definition of equivalence, that Q ∪ C̄ /∈ ℘ and thus Q → C,

as desired.
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Proposition 1.12 For any A,B,C,Q ∈ ℘, if A→ Q , B → Q, and Ā∪B̄ ∼

C̄ then C → Q.

Proof: Suppose A→ Q and B → Q, and Ā∪ B̄ ∼ C̄. Then by definition

we have A ∪ Q̄ /∈ ℘ and B ∪ Q̄ /∈ ℘. By definition, A ∪ Q̄ /∈ ℘ implies

Ā ∪ Q̄ ∼ Q̄, and B ∪ Q̄ /∈ ℘ implies B̄ ∪ Q̄ ∼ Q̄. Since Ā ∪ Q̄ ∼ Q̄, by

definition of equivalence we have Ā ∪ B̄ ∪ Q̄ ∼ Q̄ ∪ B̄. Since Q̄ ∪ B̄ ∼ Q̄,

this implies Ā∪ B̄ ∪ Q̄ ∼ Q̄. By definition of equivalence, this gives C ∪ Q̄ ∼

C ∪ Ā ∪ B̄ ∪ Q̄. Since Ā ∪ B̄ ∼ C̄, again by definition of equivalence we get

C∪Ā∪B̄∪Q̄ ∼ C∪C̄∪Q̄. Combining these results yields C∪Q̄ ∼ C∪C̄∪Q̄.

Since C ∪ C̄ ∪ Q̄ ⊇ C ∪ C̄ /∈ ℘, it follows that C ∪ C̄ ∪ Q̄ /∈ ℘. Since

C ∪ Q̄ ∼ C ∪ C̄ ∪ Q̄, we get that C ∪ Q̄ /∈ ℘ and thus C → Q. Thus in a

sense C is a least upper bound of A and B.

Definition If there exists some C such that Ā ∪ B̄ ∼ C̄, we define the join

A ∨B = C.

Definition If there exists some C such that A∪B ∼ C, we define the meet

A ∧B = C.

Proposition 1.13 For any A,B ∈ ℘, A→ B if and only if B̄ → Ā.

Proof: (⇒) Suppose A → B. Then by definition, A ∪ B̄ /∈ ℘, hence

B̄ ∪ A /∈ ℘, and B̄ ∪
(
Ā
)

/∈ ℘ by Proposition 1.7 and the definition of

equivalence. But this means B̄ → Ā.
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(⇐) Suppose B̄ → Ā. Then by definition, B̄∪
(
Ā
)
/∈ ℘, hence

(
Ā
)
∪B̄ /∈ ℘

and A∪ B̄ /∈ ℘ by Proposition 1.7 and the definition of equivalence. But this

means A→ B.

Proposition 1.14 For any A,B,C,D,Q ∈ ℘, if A → B, Q ∪ A ∼ C and

Q ∪B ∼ D, then C → D.

Proof: Since A→ B, by definition we have A∪B̄ /∈ ℘, and thus B∪A ∼ A

by definition. The definition of equivalence implies Q∪B∪A ∼ Q∪A. Since

B ∪ A ∼ A, equivalence implies Q ∪ A ∪ D̄ ∼ Q ∪ B ∪ A ∪ D̄. Since

Q ∪B ∼ D and thus equivalence implies Q ∪B ∪ D̄ ∼ D ∪ D̄; by definition,

D ∪ D̄ /∈ ℘ so we get Q ∪ B ∪ D̄ /∈ ℘. Since Q ∪ B ∪ A ∪ D̄ ⊇ Q ∪ B ∪ D̄,

we get Q ∪B ∪A ∪ D̄ /∈ ℘. Since Q ∪A ∪ D̄ ∼ Q ∪B ∪A ∪ D̄, this implies

Q∪A∪D̄ /∈ ℘. Since Q∪A ∼ C, and thus by equivalence Q∪A∪D̄ ∼ C∪D̄,

hence Q ∪ A ∪ D̄ /∈ ℘ implies C ∪ D̄ /∈ ℘. But this just means that C → D,

as desired.

2 Illustrative Counterexamples

Counterexample: Not every member of ℘ gas a negation. Indeed, take Ω =

{a, b} and ℘

Counterexample: If ∀i ∈ I, Ai ∼ Bi,
⋃
i∈I

Ai ∈ ℘ and
⋃
i∈I

Bi ∈ ℘, then it

does not necessarily follow that
⋃
i∈I

Ai ∼
⋃
i∈I

Bi. Indeed, take Ω to be the

integers and take
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℘ = {∅} ∪
{
N ⊆ Ω;N 6= ∅,

∑
n∈N

zn converges at at least one point in C
}

.

Define I = {1, 2, 3, · · · }, Ai = {1, 2, 3, · · · , i} and

Bi = {−1,−2,−3, · · · ,−i}. Next, ∀i ∈ I, Ai ∼ Bi.
⋃
i∈I

Ai ∈ ℘ because

∞∑
n=1

zn converges at z = 0.
⋃
i∈I

Bi ∈ ℘ because
∞∑
n=1

z−n converges at z = 2.

However, if we take C = {1, 2, 3, · · · }, then
⋃
i∈I

Ai ∪ C =
⋃
i∈I

Ai ∈ ℘, yet⋃
i∈I

Bi ∪ C = {· · · ,−3,−2,−1, 1, 2, 3, · · · } /∈ ℘ since · · · + z−3 + z−2 + z−1 +

z + z2 + z3 + · · · does not converge for any z ∈ C.

Thus it is not true that
⋃
i∈I

Ai ∼
⋃
i∈I

Bi.

Counterexample: One might ask, is the union of a nested collection of

consistent sets always consistent? The answer is no. Consider the sets of

statements An = {“A is an integer > i”; 1 6 i 6 n} for n = 1, 2, 3, · · ·

Clearly each An ∈ ℘ and An ⊂ An+1. However, it is clear that
∞⋃
n=1

An

is always inconsistent, since no integer is greater than every other. Hence
∞⋃
n=1

An /∈ ℘.
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